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ABSTRACT

We present algorithms for a class of resource allocation problems
both in the online setting with stochastic input and in the offline
setting. This class of problems contains many interesting special
cases such as the Adwords problem. In the online setting we in-
troduce a new distributional model called the adversarial stochastic
input model, which is a generalization of the i.i.d model with un-
known distributions, where the distributions can change over time.
In this model we give a 1− O(ǫ) approximation algorithm for the
resource allocation problem, with almost the weakest possible as-
sumption: the ratio of the maximum amount of resource consumed
by any single request to the total capacity of the resource, and the
ratio of the profit contributed by any single request to the optimal

profit is at most ǫ2/ log(1/ǫ)2

log n+log(1/ǫ)
where n is the number of resources

available. There are instances where this ratio is ǫ2/ log n such that
no randomized algorithm can have a competitive ratio of 1 − o(ǫ)
even in the i.i.d model. The upper bound on ratio that we require
improves on the previous upper-bound for the i.i.d case by a factor
of n.

Our proof technique also gives a very simple proof that the greedy
algorithm has a competitive ratio of 1− 1/e for the Adwords prob-
lem in the i.i.d model with unknown distributions, and more gen-
erally in the adversarial stochastic input model, when there is no
bound on the bid to budget ratio. All the previous proofs assume

∗A full version of this paper, with all the proofs, is available at
http://arxiv.org
†Part of this work was done while the author was at Microsoft Re-
search, Redmond
‡Part of this work was done while the author was at Microsoft Re-
search, Redmond

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’11, June 5–9, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0261-6/11/06 ...$10.00.

that either bids are very small compared to budgets or something
very similar to this.

In the offline setting we give a fast algorithm to solve very large
LPs with both packing and covering constraints. We give algo-
rithms to approximately solve (within a factor of 1 + ǫ) the mixed
packing-covering problem with O( γm log n

ǫ2
) oracle calls where the

constraint matrix of this LP has dimension n ×m, and γ is a pa-
rameter which is very similar to the ratio described for the online
setting.

We discuss several applications, and how our algorithms improve
existing results in some of these applications.

Categories and Subject Descriptors

F.2.0 [Analysis of Algorithms and Problem Complexity]: Gen-
eral; J.4 [Social and Behavioral Sciences]: Economics

General Terms

Algorithms, Economics, Theory

Keywords

Online algorithms, Stochastic input, Packing-Covering

1. INTRODUCTION
The results in this paper fall into distinct categories of compet-

itive algorithms for online problems and fast approximation algo-
rithms for offline problems. We have two main results in the online
framework and one result in the offline setting. However they all
share common techniques.

There has been an increasing interest in online algorithms moti-
vated by applications to online advertising. The most well known
is the Adwords problem introduced by Mehta et. al. [MSVV05],
where the algorithm needs to assign keywords arriving online to
bidders to maximize profit, subject to budget constraints for the
bidders. The problem has been analyzed in the traditional frame-
work for online algorithms: worst-case competitive analysis. As
with many online problems, the worst-case competitive analysis is
not entirely satisfactory and there has been a drive in the last few
years to go beyond the worst-case analysis. The predominant ap-
proach has been to assume that the input satisfies some stochastic
property. For instance the random permutation model (introduced
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by Goel and Mehta [GM08]) assumes that the adversary picks the
set of keywords, but the order in which the keywords arrive is cho-
sen uniformly at random. A closely related model is the i.i.d model:
assume that the keywords are i.i.d samples from a fixed distribution,
which is unknown to the algorithm. Stronger assumptions such as
i.i.d samples from a known distribution have also been considered.

First Result.
A key parameter on which many of the algorithms for Adwords

depend is the bid to budget ratio. For instance in Mehta et. al.
[MSVV05] and Buchbinder, Jain and Naor [BJN07] the algorithm
achieves a worst case competitive ratio that tends to 1− 1/e as the
bid to budget ratio (let’s call it γ) tends to 0. (1 − 1/e is also the
best competitive ratio that any randomized algorithm can achieve
in the worst case.) Devanur and Hayes [DH09] showed that in the
random permutation model, the competitive ratio tends to 1 as γ
tends to 0. This result showed that competitive ratio of algorithms
in stochastic models could be much better than that of algorithms
in the worst case. The important question since then has been to
determine the optimal trade-off between γ and the competitive ra-
tio. [DH09] showed how to get a 1- O(ǫ) competitive ratio when γ

is at most ǫ3

n log(mn/ǫ)
where n is the number of advertisers and m

is the number of keywords. Subsequently Agrawal, Wang and Ye
[AWY09] improved the bound on γ to ǫ2

n log(mn/ǫ)
. The papers of

Feldman et. al. [FHK+10] and Agrawal, Wang and Ye [AWY09]
have also shown that the technique of [DH09] can be extended to
other online problems.

The first main result in this paper is the following 3-fold improve-

ment of previous results: (Theorems 2 - 4)

1. We give an algorithm which improves the bound on γ to
ǫ2/ log(1/ǫ)2

log(n)+log(1/ǫ)
. This is almost optimal; we show a lower

bound of ǫ2

log(n)
.

2. The bound applies to a more general model of stochastic in-
put, called the adversarial stochastic input model. This is a
generalization of the i.i.d model with unknown distribution,
but is incomparable to the random permutation model.

3. It applies to a more general class of online problems that we
call the resource allocation framework. A formal definition
of the framework is presented in Section 2.2 and a discussion
of many interesting special cases is presented in Section 7.

Regarding the bound on γ, the removal of the factor of n is sig-
nificant. Consider for instance the Adwords problem and suppose
that the bids are all in [0,1]. The earlier bound implies that the
budgets need to be of the order of n/ǫ2 in order to get a 1 − ǫ
competitive algorithm, where n is the number of advertisers. With
realistic values for these parameters, it seems unlikely that this con-
dition would be met. While with the improved bounds presented in
this paper, we only need the budget to be of the order of log n/ǫ2

and this condition is met for reasonable values of the parameters.
We note here that so far, all the algorithms for the i.i.d model

(with unknown distribution) were actually designed for the random
permutation model. It seems that any algorithm that works for one
should also work for the other. However we can only show that our
algorithm works in the i.i.d model, so the natural question is if our
algorithm works for the random permutation model. It would be
very surprising if it didn’t.

One drawback of the stochastic models considered so far is that
they are time invariant, that is the input distribution does not change
over time. The adversarial stochastic input model allows the input

distribution to change over time. The model is as follows: in every
step the adversary picks a distribution, possibly adaptively depend-
ing on what the algorithm has done so far, and the actual keyword
in that step is drawn from this distribution. The competitive ratio
is defined with respect to the optimum fractional solution for an of-

fline instance of the problem, called the distribution instance, which
is defined by the distribution (see Section 2.2). In Section 2.2,
where we define the distribution instance, we also prove that the
optimal fractional solution for the distribution instance is at least as
good as the commonly used benchmark of expected value of opti-
mal fractional solution, where the expectation is with respect to the
distribution. A detailed description of this model, how the adver-
sary is constrained to pick its distributions and how it differs from
the worst-case model is presented in Section 2.2.

Second Result.
Another important open problem is to improve the competitive

ratio for the Adwords problem when there is no bound on γ. The
best competitive ratio known for this problem is 1/2 in the worst
case. Nothing better was known, even in the stochastic models.
(For the special case of online bipartite matching, in the case of i.i.d
input with a known distribution, recent series of results achieve a ra-
tio of better than 1-1/e, for instance by Feldman et. al. [FMMM09]
and Bahmani and Kapralov [BK10]. The best ratio so far is .702 by
Manshadi, Gharan and Saberi [MGS11].) The second result in this

paper is that for the Adwords problem in the adversarial stochastic

input model, with no assumption on γ, the greedy algorithm gets a

competitive ratio of 1− 1/e against the optimal fractional solution

to the distribution instance (Theorem 5). The greedy algorithm is
particularly interesting since it is a natural algorithm that is used
widely for its simplicity. Because of its wide use, previously the
performance of the greedy algorithm has been analyzed by Goel
and Mehta [GM08] who showed that in the random permutation
and the i.i.d models, it has a competitive ratio of 1 − 1/e with an
assumption which is essentially that γ tends to 0.

Third Result.
Charles et. al. [CCD+10] considered the following (offline)

problem: given a lopsided bipartite graph G = (L,R,E), that
is a bipartite graph where m = |L| ≫ |R| = n, does there exist
an assignment M : L→ R with (j,M(j)) ∈ E for all j ∈ L, and
such that for every vertex i ∈ R, |M−1(i)| ≥ Bi for some given
values Bi. Even though this is a classic problem in combinato-
rial optimization with well known polynomial time algorithms, the
instances of interest are too large to use traditional approaches to
solve this problem. (The value ofm in particular is very large.) The
approach used by [CCD+10] was to essentially design an online
algorithm in the i.i.d model: choose vertices from L uniformly at
random and assign them to vertices in R in an online fashion. The
online algorithm is guaranteed to be close to optimal, as long as suf-
ficiently many samples are drawn. Therefore it can be used to solve
the original problem (approximately): the online algorithm gets an
almost satisfying assignment if and only if the original graph has a
satisfying assignment (with high probability).

The third result in this paper is a generalization of this result to

get fast approximation algorithms for a wide class of problems in

the resource allocation framework (Theorem 6). Problems in the
resource allocation framework where the instances are too large to
use traditional algorithms occur fairly often, especially in the con-
text of online advertising. Formal statements and a more detailed
discussion are presented in Section 2.3.

The underlying idea used for all these results can be summarized
at a high level as thus: consider a hypothetical algorithm called
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Pure-random that knows the distribution from which the input is
drawn and uses an optimal solution w.r.t this distribution. Now
suppose that we can analyze the performance of Pure-random by
considering a potential function and showing that it decreases by a
certain amount in each step. Now we can design an algorithm that
does not know the distribution as follows: consider the same po-
tential function, and in every step choose the option that minimizes
the potential function. Since the algorithm minimizes the potential
in each step, the decrease in the potential for this algorithm is better
than that for Pure-random and hence we obtain the same guarantee
as that for Pure-random.

For instance, for the case where γ is small, the performance
of Pure-random is analyzed using Chernoff bounds. The Cher-
noff bounds are proven by showing bounds on the expectation of
the moment generating function of a random variable. Thus the
potential function is the sum of the moment generating functions
for all the random variables that we apply the Chernoff bounds to.
The proof shows that in each step this potential function decreases
by some multiplicative factor. The algorithm is then designed to
achieve the same decrease in the potential function. A particularly
pleasing aspect about this technique is that we obtain very simple
proofs. For instance, the proof of Theorem 5 is extremely sim-
ple: the potential function in this case is simply the total amount
of unused budgets and we show that this amount (in expectation)
decreases by a factor of 1 − 1/m in each step where there are m
steps in all.

On the surface, this technique and the resulting algorithms1 bear
a close resemblance to the algorithms of Young [You95] for de-
randomizing randomized rounding and the fast approximation al-
gorithms for solving covering/packing LPs of Plotkin, Shmoys and
Tardos [PST91], Garg and Könemann [GK98] and Fleischer [Fle00].
In fact Arora, Hazan and Kale [AHK05] showed that all these algo-
rithms are related to the multiplicative weights update method for
solving the experts problem and especially highlighted the similar-
ity between the potential function used in the analysis of the multi-
plicative update method and the moment generating function used
in the proof of Chernoff bounds and Young’s algorithms. Hence
it is no surprise that our algorithm is also a multiplicative update
algorithm. It seems that our algorithm is closer in spirit to Young’s
algorithms than others. It is possible that our algorithm can also be
interpreted as an algorithm for the experts problem. In fact Mehta
et. al. [MSVV05] asked if there is a 1−o(1) competitive algorithm
for Adwords in the i.i.d model with small bid to budget ratio, and
in particular if the algorithms for experts could be used. They also
conjectured that such an algorithm would iteratively adjust a bud-
get discount factor based on the rate at which the budget is spent.
Our algorithms for resource allocation problem when specialized
for Adwords look exactly like that and with the connections to the
experts framework, we answer the questions in [MSVV05] in the
positive.
Organization: The rest of the paper is organized as follows. In
Section 2, we define the resource allocation framework, the adver-
sarial stochastic model and state our results formally as theorems.
We also discuss one special case of the resource allocation frame-
work — the adwords problem and formally state our results. In
Section 3, we consider a simplified “min-max” version of the re-
source allocation framework and present the proofs for this version.
The other results build upon this simple version. In Section 4 we
give a fast approximation algorithm for the mixed covering-packing
problem (Theorem 6). The 1− O(ǫ) competitive online algorithm
for the resource allocation framework with stochastic input (Theo-

1For the case of small γ. It is not clear if this discussion applies to
the case of large γ, that is to Theorem 5

rem 2) is in Section 5. The 1−1/e competitive algorithm (Theorem
5) for the Adwords problem is in Section 6. Several special cases
of the resource allocation framework are considered in Section 7.
Section 8 concludes with some open problems and directions for
future research.

2. PRELIMINARIES & MAIN RESULTS

2.1 Resource allocation framework
We consider the following framework of optimization problems.

There are n resources, with resource i having a capacity of ci.
There arem requests; each request j can be satisfied by a vector xj

that is constrained to be in a polytope Pj . (We refer to the vector
xj as an option to satisfy a request, and the polytope Pj as the set
of options.) The vector xj consumes ai,j · xj amount of resource
i, and gives a profit of wj · xj . Note that ai,j , wj and xj are all
vectors. The objective is to maximize the total profit subject to the
capacity constraints on the resources. The following LP describes
the problem:

maximize
X

j

wj · xj s.t.

∀ i,
X

j

ai,j · xj ≤ ci

∀ j,xj ∈ Pj .

We assume that we have the following oracle available to us: given
a request j and a vector v, the oracle returns the vector xj that max-
imizes v.xj among all vectors in Pj . Let γ = max({

ai,j .xj

ci
}i,j ∪

{
wj .xj

W∗ }j) be the notion corresponding to the bid to budget ratio
for Adwords. Here W ∗ is the optimal offline objective to the dis-
tribution instance, defined in Section 2.2.

The canonical case is where each Pj is a unit simplex in RK , i.e.
Pj = {xj ∈ RK :

P

k xj,k = 1}. This captures the case where
there areK discrete options, each with a given profit and consump-
tion. This case captures most of the applications we are interested
in, which are described in Section 7. All the proofs will be pre-
sented for this special case, for ease of exposition. The co-ordinates
of the vectors ai,j and wj will be denoted by a(i, j, k) and wj,k

respectively, i.e., the kth option consumes a(i, j, k) amount of re-
source i and gives a profit ofwj,k. For an example of an application
that needs more general polytopes see Section 7.4.

We consider two versions of the above problem. The first is an
online version with stochastic input: requests are drawn from an
unknown distribution. The second is when the number of requests
is much larger than the number of resources, and our goal is to
design a fast PTAS for the problem.

2.2 Online Algorithms with Stochastic Input
We now consider an online version of the resource allocation

framework. Here requests arrive online. We consider the i.i.d.
model, where each request is drawn independently from a given
distribution. The distribution is unknown to the algorithm. The al-
gorithm knows m, the total number of requests. The competitive
ratios we give for resource allocation problems with bounded γ are
with respect to an upper bound on the expected value of fractional
optimal solution, namely, the fractional optimal solution of the dis-
tribution instance, defined below.

Consider the following distribution instance of the problem. It is
an offline instance defined for any given distribution over requests
and the total number of requestsm. The capacities of the resources
in this instance are the same as in the original instance. Every
request in the support of the distribution is also a request in this
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instance. Suppose request j occurs with probability pj . Assume
w.l.o.g that pj ≤ 1/m. (If pj > 1/m for some request then repeat
that request ⌊mpj⌋ times with probability 1/m and one more time
with probability pj − ⌊mpj⌋/m. This “breaking up” of a request
j with mpj > 1 is done in order not to increase γ.) The resource
consumption of j in the distribution instance is given by mpjai,j

for all i and the profit is mpjwj . The intuition is that if the re-
quests were drawn from this distribution then the expected number
of times request j is seen is mpj and this is represented in the dis-
tribution instance by scaling the consumption and the profit vectors
by mpj. To summarize, the distribution instance is as follows.

maximize
X

j in the support

mpjwj .xj s.t.

∀ i,
X

j

mpjai,j .xj ≤ ci

∀ j,xj ∈ Pj .

We now prove that the fractional optimal solution to the distribution
instance is an upper bound on the expectation of OPT, where OPT
is the offline fractional optimum of the actual sequence of requests.

LEMMA 1. OPT[Distribution instance] ≥ E[OPT]

PROOF. The average of optimal solutions for all possible se-
quences of requests should give a feasible solution to the distribu-
tion instance with a profit equal toE[OPT]. Thus the optimal profit
for the distribution instance could only be larger.

The competitive ratio of an algorithm in the i.i.d model is defined
as the ratio of the expected profit of the algorithm to the fractional
optimal profit for the distribution instance. The main result is that
as γ tends to zero, the competitive ratio tends to 1. In fact, we give
the almost optimal trade-off.

THEOREM 2. For any ǫ > 0, we give an algorithm such that if

γ = ǫ2/ log(1/ǫ)2

log(n)+log(1/ǫ)
then the competitive ratio of the algorithm is

1−O(ǫ).

THEOREM 3. There exist instances with γ = ǫ2

log(n)
such that

no algorithm can get a competitive ratio of 1− o(ǫ).2

Also, our algorithm works when the polytope Pj is obtained as
an LP relaxation of the actual problem.3 To be precise, suppose
that the set of options that could be used to satisfy a given request
corresponds to some set of vectors, say Ij . Let the polytope Pj ⊇
Ij be an α approximate relaxation of Ij if for the profit vector
wj and for all xj ∈ Pj , there is an oracle that returns a yj ∈ Ij

such that wj .yj ≥ αwj .xj . Given such an oracle, our algorithm
achieves a competitive ratio of α−O(ǫ).

THEOREM 4. Given a resource allocation problem with an α
approximate relaxation, and for any ǫ > 0, we give an algorithm

such that if γ = ǫ2/ log(1/ǫ)2

log(n)+log(1/ǫ)
then the competitive ratio of the

algorithm is α−O(ǫ).

We prove Theorem 4 in the full version of the paper.
In fact, our results hold for the following more general model,

the adversarial stochastic input model. In each step, the adversary
2The proof of this theorem is obtained by a modification of a simi-
lar theorem for random permutations presented in [AWY09].
3There may be trivial ways of defining Pj such that its vertices
correspond to the actual options. The motivation for allowing non-
trivial relaxations is computational: recall that we need to be able
to optimize linear functions over Pj .

adaptively chooses a distribution from which the request in that step
is drawn. The adversary is constrained to pick the distributions in
one of the following two ways. In the first case, we assume that
a target objective value OPTT is given to the algorithm, and that
the adversary is constrained to pick distributions such that the frac-
tional optimum solution of each of the corresponding distribution
instances is at least OPTT (or at most OPTT for minimization prob-
lems). The competitive ratio is defined with respect to OPTT . In
the second case, we are not given a target, but the adversary is con-
strained to pick distributions so that the fractional optimum of each
of the corresponding distribution instances is the same, which is the
benchmark with respect to which the competitive ratio is defined.

Note that while the i.i.d model can be reduced to the random
permutation model, these generalizations are incomparable to the
random permutation model as they allow the input to vary over
time. Also the constraint that each of the distribution instances
has a large optimum value distinguishes this from the worst-case
model. This constraint in general implies that the distribution must
contain sufficiently rich variety of requests in order for the corre-
sponding distribution instance to have a high optimum. To truly
simulate the worst-case model, in every step the adversary would
chose a “deterministic distribution”, that is a distribution supported
on a single request. Then the distribution instance will simply have
m copies of this single request and hence will not have a high op-
timum. For instance consider online bipartite b-matching where
each resource is a node on one side of a bipartite graph with the
capacity ci denoting the number of nodes it can be matched to and
the requests are nodes on the other side of the graph and can be
matched to at most one node. A deterministic distribution in this
case corresponds to a single online node and if that node is repeated
m times then the optimum for that instance is just the weighted (by
ci) degree of that node. If the adversary only picks such determin-
istic distributions then he is constrained to pick nodes of very high
degree thus making it easy for the algorithm to match them.

We refer the reader to Section 7 for a discussion on several prob-
lems that are special cases of the resource allocation framework
and have been previously considered. Here, we discuss one special
case — the adwords problem.

2.2.1 The Adwords problem

In the i.i.d Adwords problem, there are n bidders, and each bid-
der i has a daily budget of Bi dollars. Keywords arrive online with
keyword j having an (unknown) probability pj of arriving in any
given step. For every keyword j, each bidder submits a bid, bij ,
which is the profit obtained by the algorithm on allocating keyword
j to bidder i. The objective is to maximize the profit, subject to the
constraint that no bidder is charged more than his budget. Here, the
resources are the daily budgets of the bidders, the requests are the
keywords, and the options are once again the bidders. The amount
of resource consumed and the profit are both bij .

For this problem, with no bounds on γ, we show that the greedy
algorithm has a competitive ratio of 1−1/e. For our results for the
adwords problem with bounded γ, see Section 7.1

THEOREM 5. The greedy algorithm achieves a competitive ra-

tio of 1−1/e for the Adwords problem in the adversarial stochastic

input model with no assumptions on the bid to budget ratio.

We note here that the competitive ratio of 1 − 1/e is tight for the
greedy algorithm [GM08]. It is however not known to be tight for
an arbitrary algorithm.

2.3 Fast algorithms for very large LPs
Charles et al. [CCD+10] consider the following problem: given

a bipartite graph G = (L,R,E) where m = |L| ≫ |R| = n, does
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there exist an assignment M : L → R with (j,M(j)) ∈ E for
all j ∈ L, and such that for every vertex i ∈ R, |M−1(i)| ≥ Bi

for some given values Bi. They gave an algorithm that runs in time
linear4 in the number of edges of an induced subgraph obtained by

taking a random sample fromR of sizeO
“

m log n
mini{Bi}ǫ2

”

, for a gap-

version of the problem with gap ǫ. When mini{Bi} is reasonably
large, such an algorithm is very useful in a variety of applications
involving ad assignment for online advertising.

We consider a generalization of the above problem (that cor-
responds to the resource allocation framework). In fact, we con-
sider the following mixed covering-packing problem. Suppose that
there are n1 packing constraints, one for each i ∈ {1..n1} of the
form

Pm
j=1 ai,jxj ≤ ci and n2 covering constraints, one for each

i ∈ {1..n2} of the form
Pm

j=1 bi,jxj ≥ di. Each xj is con-
strained to be in Pj . Does there exists a feasible solution to this
system of constraints? The gap-version of this problem is as fol-
lows. Distinguish between the two cases:

YES: There is a feasible solution.

NO: There is no feasible solution even if all of the ci’s are multi-
plied by 1 + ǫ and all of the di’s is multiplied by 1− ǫ.

We note that solving (offline) an optimization problem in the re-
source allocation framework can be reduced to the above problem
through a binary search on the objective function value.

Suppose as in [CCD+10] that m is much larger than n. Assume
that solving the following costs unit time: given j and v, find xj ∈
Pj that maximizes v.xj . Let γ = max{i ∈ [n1], j ∈ [m] :
ai,j .xj

ci
} ∪ {i ∈ [n2], j ∈ [m] :

bi,j .xj

di
}.

THEOREM 6. There is an algorithm that solves the gap ver-

sion of the mixed covering-packing problem with a running time of

O
`

γm log n
ǫ2

´

.

Applications to online advertising:

The matching problem introduced by [CCD+10] was motivated
by the problem of computing the available inventory for display ad
allocation (see the original paper for details). In fact, the matching
problem was a simplified version of the real problem, which fits
into the resource allocation framework. Moreover, such algorithms
are used in multiple ways. For instance, although the technique of
Devanur and Hayes [DH09] was originally designed to solve the
purely online problem, it can be used in the PAC model where the
algorithm can make use of a prediction of the future arrival of re-
quests (see for instance Vee, Vassilvitskiiy and Shanmugasundaram
[VVS10]). The key technique is to formulate an LP relaxation of
the problem and learn the optimal dual variables using the predic-
tion, and these duals can then be used for the allocation online.
Even if the prediction is not entirely accurate, we note that such
an approach has certain advantages. This motivates the problem of
finding the optimal duals. We observe that our algorithm can also
be used to compute near optimal duals which can then be used to
do the allocation online. Problems such as the Display ad alloca-
tion problem (please see full version of the paper for details) can
benefit from such an algorithm.

A similar approach was considered by Abrams, Mendelevitch
and Tomlin [AMT07] for the following problem motivated by spon-
sored search auctions: for each query j, one can show an advertiser
in each of the K slots. Each advertiser i bids a certain amount on
each query j, and has a daily budget. However, the cost to an adver-
tiser depends on the entire ordered set of advertisers shown (called

4In fact, the algorithm makes a single pass through this graph.

a slate), based on the rules of the auction. Given the set of queries
that arrive in a day (which in practice is an estimate of the queries
expected rather than the actual queries), the goal is to schedule a
slate of advertisers for each query such that the total cost to each
advertiser is within the budget and maximize a given objective such
as the total revenue, or the social welfare. This problem is modeled
as an LP and a column-generation approach is suggested to solve it.
Also, many compromises are made, in terms of limiting the num-
ber of queries, etc. due to the difficulties in solving an LP of very
large size. We observe that this LP fits in the resource allocation
framework and thus can be solved quickly using our algorithm.

3. MIN-MAX VERSION
In this section, we solve a slightly simplified version of the gen-

eral online resource allocation problem, which we call the min-max
version. In this problem, m requests arrive online, and each of them
must be served. The objective is to minimize the maximum fraction
of any resource consumed. (There is no profit.) The following LP
describes it formally.

minimize λ s.t.

∀ i,
X

j,k

a(i, j, k)xj,k ≤ λci

∀ j,
X

k

xj,k = 1,

∀ j, k, xj,k ≥ 0.

For ease of illustration, we assume that the requests arrive i.i.d
(unknown distribution) in the following proof. At the end of this
section, we show that the proof holds for the adversarial stochastic
input model also.

The algorithm proceeds in steps. Let λ∗ denote the fractional
optimal objective value of the distribution instance of this problem.
Let Xt

i be the random variable indicating the amount of resource i
consumed during step t, that is, Xt

i = a(i, j, k) if in step t, request
j was chosen and was served using option k. Let ST

i =
PT

t=1X
t
i

be the total amount of resource i consumed in the first T steps.
Let γ = maxi,j{

a(i,j,k)
ci
}, which implies that for all i, j and k,

a(i, j, k) ≤ γci. Let φt
i = (1 + ǫ)St

i /(γci). For the sake of con-
venience, we let S0

i = 0 and φ0
i = 1 for all i. The algorithm is as

follows.

ALG Min-max.
In step t+ 1, on receiving request j, use option

arg min
k

(

X

i

a(i, j, k)φt
i

ci

)

.

LEMMA 7. The algorithm ALG Min-max described above ap-

proximates λ∗ within a factor of (1 + ǫ), with a probability at least

1− δ, where δ = n exp
“

−ǫ2λ∗

4γ

”

We will prove Lemma 7 through a series of lemmas, namely Lem-
mas 8, 9 and 10. Before we begin the proof, we give some intu-
ition. Consider a hypothetical algorithm, call it Pure-random, that
knows the distribution. Let x∗

j denote the optimal fractional so-
lution to the distribution instance. Pure-random is a non-adaptive
algorithm which uses x∗

j to satisfy request j, i.e., it serves request
j using option k with probability xjk. Suppose we wanted to prove
a bound on the performance of Pure-random, that is show that with
high probability, Pure-random is within 1 +O(ǫ) of the optimum,
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say λ∗. This can be done using Chernoff bounds: for each re-
source separately bound the probability that the total consumption
is more than λ∗ci(1 + O(ǫ)) using Chernoff bounds and take a
union bound. Note that the Chernoff bounds are shown by proving
an upper bound on the expectation of the moment generating func-
tion of the random variables. If we could show the same bound for
our algorithm, then we would be done. Let φt =

P

i φ
t
i . We wish

to upper bound the expectation of φm.
Consider the state of the algorithm after the first t steps. Let

X̃t+1
i denote the amount of resource i consumed in step t+ 1 had

we served the request at step t+1 using the Pure-random algorithm
instead of our algorithm. Then we show that the expectation of

φt+1 is upper bounded by
P

i φ
t
i

„

1 + ǫ
X̃t+1

i

γci

«

, and the rest of

the proof is along the lines of the Chernoff bound proof.

LEMMA 8. For all t,

φt+1 ≤
X

i

φt
i

 

1 + ǫ
X̃t+1

i

γci

!

.

PROOF.

φt+1 =
X

i

φt+1
i =

X

i

φt
i(1 + ǫ)

X
t+1
i

γci

≤
X

i

φt
i

„

1 + ǫ
Xt+1

i

γci

«

≤
X

i

φt
i

 

1 + ǫ
X̃t+1

i

γci

!

The first inequality is because the convexity of the function (1+ǫ)x

can be used to upper bound it by 1 + ǫx for all x ∈ [0, 1], and
Xt

i ≤ maxj,k a(i, j, k) ≤ γci. The second inequality follows
from the definition of our algorithm as it chooses the option that

minimizes
n

P

i

a(i,j,k)φt
i

ci

o

LEMMA 9. For all T , E[φT ] ≤ n exp
“

ǫλ∗T
γm

”

, where λ∗ is

the optimal solution to the LP.

PROOF. From Lemma 8, it follows that

E
ˆ

φt+1 | φt
i for all i

˜

≤ E

"

X

i

φt
i

 

1 + ǫ
X̃t+1

i

γci

!#

≤
X

i

φt
i

„

1 + ǫ
λ∗

γm

«

= φt

„

1 + ǫ
λ∗

γm

«

≤ φt exp

„

ǫλ∗

γm

«

and hence the lemma follows since φ0 = n. The second inequality
follows from the fact that E[X̃t+1

i ] ≤ λ∗ci

m
for all i. This is be-

cause requests are drawn i.i.d, and hence the optimal value of the
distribution instance is the same for all time steps and is equal to
λ∗.

We prove Lemma 10 in the full version of the paper.

LEMMA 10.

Pr

»

max
i



ST
i

ci

ff

>
T

m
λ∗(1 + ǫ)

–

≤ n exp

„

−ǫ2Tλ∗

4γm

«

.

Substituting T = m in Lemma 10, we get Lemma 7.

Adversarial stochastic input model.
In the above lemmas, we assumed that the requests are drawn

i.i.d, i.e., we used the fact that E[X̃t
i ] ≤ λ∗ci/m for all t. But in

an adversarial stochastic model, since the distribution from which
a request is drawn changes each step, the optimal objective of the
distribution instance also changes every step, i.e., it could be λ∗

t at
step t. So, in the proof Lemma 9, where we proved that

E
ˆ

φt+1 | φt
i for all i

˜

≤ φt exp

„

ǫλ∗

γm

«

,

we would instead have E
ˆ

φt+1 | φt
i for all i

˜

≤ φt exp
“

ǫλ∗

t

γm

”

.

But given a target λ∗, we know the adversary is constrained to pick
distributions whose distribution instance has an optimum objective
at most λ∗ (recall that this is a minimization problem). Therefore,

we can upper bound φt exp
“

ǫλ∗

t

γm

”

by φt exp
“

ǫλ∗

γm

”

. The rest of

the steps in the proof remain the same. Thus, the adversary is not
constrained to pick requests from the same distribution at every
time step. All we require is that, whatever distribution it uses for
drawing its request, the corresponding distribution instance has an
optimum objective value at most λ∗, which is the target value we
aim for.

In the following sections, we illustrate all our proofs in the i.i.d
model with unknown distribution and it is easy to convert them to
proofs for the adversarial stochastic input model.

4. MIXED COVERING-PACKING AND

ONLINE RESOURCE ALLOCATION

4.1 Mixed Covering-Packing
In this section, we consider the mixed packing-covering problem

stated in Section 2.3. and prove Theorem 6. We restate the LP for
the mixed covering-packing problem here.

∀ i,
X

j,k

a(i, j, k)xj,k ≤ ci

∀ i,
X

j,k

b(i, j, k)xj,k ≥ di

∀ j,
X

k

xj,k = 1,

∀ j, k, xj,k ≥ 0.

The goal is to check if there is a feasible solution to this LP. We
solve a gap version of this problem. Distinguish between the two
cases:

YES: There is a feasible solution.

NO: There is no feasible solution even if all of the ci’s are multi-
plied by 1 + ǫ and all of the di’s are multiplied by 1− ǫ.

For convenience of description, we refer to the quantities indexed
by j as requests, those indexed by i as resources and those indexed
by k as options.

As before, the algorithm proceeds in steps. In each step, the algo-
rithm samples a request i.i.d from the total of m possible requests.
We will prove that if the number of samples T ≥ Θ( γm ln(n/δ))

ǫ2
),

then the algorithm solves the gap version with probability at least
(1 − δ). Since the time taken for serving any given request is one
(by taking the time consumed by a single oracle call to be one),
this proves that the total run-time is O( γm ln(n/δ))

ǫ2
), thus proving

Theorem 6, if δ is a constant.
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LetXt
i , X̃t

i , St
i be as defined in Section 3. Let Y t

i be the random
variable indicating the amount of demand i satisfied during step
t, that is, Y t

i = b(i, j, k) if in step t, request j was chosen and

was served using option k. Let Ỹi
t

denote the amount of demand i
satisfied during step t by the optimal algorithm for the distribution
instance of this problem. Let V T

i =
PT

t=1 Y
t

i . Let φt
i = ηc(1 +

ǫ
2
)

St
i

γci (1 + ǫ
2γm

)T−t, where ηc = (1 + ǫ
2
)−(1+ ǫ

2
) T

γm . Let ψt
i =

ηd(1− ǫ
2
)

V t
i

γdi (1− ǫ
2γm

)T−t, where ηd = (1− ǫ
2
)
−(1− ǫ

2
) T

γm . Let

φt =
P

i φ
t
i , let ψt =

P

i ψ
t
i and Φt = φt + ψt. As before, we

let S0
i = 0 and V 0

i = 0. The algorithm is as follows.

ALG Packing-Covering.
Given request j in step t+ 1, use the option

arg min
k

8

>

>

>

>

>

<

>

>

>

>

>

:

1
“

1 + ǫ
2γm

”

X

i

φt
i
a(i, j, k)

ci

−
1

“

1− ǫ
2γm

”

X

i

ψt
i
b(i, j, k)

di

9

>

>

>

>

>

=

>

>

>

>

>

;

At the end of T steps, the algorithm checks if maxi
ST

i

ci
<

T
m

(1 + ǫ
2
) and if mini

V T
i

di
> T

m
(1 − ǫ

2
). If true, the algorithm

answers YES. Else it says NO. We now proceed to prove that,
whenever the real answer is YES, the algorithm says YES with a
high probability. Lemmas 11 and 12 prove this case. We prove
them in the full version of the paper.

LEMMA 11. For a YES instance E
ˆ

ΦT
˜

≤ Φ0.

LEMMA 12. For a YES instance

Pr

»

max
i

ST
i

ci
>
T

m
(1 +

ǫ

2
)

–

+ Pr

»

min
i

V T
i

di
<
T

m
(1−

ǫ

2
)

–

≤ Φ0

Observe that Φ0 = ηc(1 + ǫ
2γm

)T + ηd(1 −
ǫ

2γm
)T , which

is upper bounded by n exp
“

−ǫ2T
16γm

”

+ n exp
“

−ǫ2T
8γm

”

. If T =

O( γm log(n/δ)

ǫ2
), we have the failure probability to be at most δ.

Thus Lemma 12 proves that the algorithm ALG Packing-Covering

says YES with a probability at least 1− δ when the real answer is
YES.

We now proceed to prove that when the real answer is NO, our
algorithm says NO with a probability at least 1− δ, i.e.,

LEMMA 13. For a NO instance, if T ≥ Θ( γm log(n)

ǫ2
), then

Pr

»

max
i

ST
i

ci
<
T

m
(1 +

ǫ

2
) & min

i

V T
i

di
>
T

m
(1−

ǫ

2
)

–

< δ.

The proof appears in the full version of the paper.
Lemmas 11, 12 and 13 prove that the gap-version of the mixed

covering-packing problem can be solved in timeO( γm log(n)

ǫ2
), thus

proving Theorem 6.

REMARK 1. We show that a greedy-type algorithm won’t solve

the gap version of even just the covering problem. This answers an

open question from [CCD+10] regarding whether or not the greedy

algorithm solves the gap version. The precise algorithm and why it

fails are included in the full version of the paper.

5. ONLINE ALGORITHMS WITH

STOCHASTIC INPUT
In this section, we use the potential function based algorithm

to solve the online version of the resource allocation problem in-
troduced in Section 2.2. The following LP describes the resource
allocation problem.

maximize
X

j,k

wj,kxj,k s.t. (1)

∀ i,
X

j,k

a(i, j, k)xj,k ≤ ci

∀ j,
X

k

xj,k ≤ 1,

∀ j, k, xj,k ≥ 0.

Similar to the algorithm in [AWY09], our algorithm computes in-
creasingly better estimates of the objective value by computing the
optimal solution for the observed requests, and uses it to guide fu-
ture allocations. Through Lemmas 14 and 15, we show that our
algorithm achieves a competitive ratio of 1 − O(ǫ) thus proving
Theorem 2. We assume that the number of requests m is known in
advance. Algorithm 1 describes our algorithm.

Algorithm 1 : Algorithm for stochastic online resource allocation

1: Initialize t0 : t0 ← ⌈ǫm⌉
2: for r = 0 to l − 1 do

3: for t = tr + 1 to tr+1 do

4: If the incoming request is j, use the following option k:

arg min
k

8

>

>

>

>

>

<

>

>

>

>

>

:

ǫc/γ
“

1 + ǫc

γm

”

X

i

φt−1
i

a(i, j, k)

ci

−
ǫo/wmax

“

1− ǫoZ(r)
wmaxm

”φt−1
obj wj,k

9

>

>

>

>

>

=

>

>

>

>

>

;

.

5: if t = tr + 1 then

6: For all i, St
i (r) = Xt

i , and V t(r) = Y t.
7: else

8: For all i, St
i (r) = St−1

i (r) + Xt
i , and, V t(r) =

V t−1(r) + Y t.
9: end if

10: end for

11: end for

The first ǫm requests are not served but used just for computa-
tional purposes. After these first ǫm requests, the algorithm pro-
ceeds in l stages, namely 0, 1, . . . , l − 1, where l is such that
ǫ2l = 1 and ǫ is a positive number between 0 and 1 that the al-
gorithm designer gets to choose. In stage r the algorithm serves
tr = ǫm2r requests. Note that the stage r consists of all steps
t ∈ (tr, tr+1].

Let W ∗ denote the optimal solution to the distribution instance
of the problem. Let Xt

i be as defined in Section 3. Let Y t be the
amount of profit earned during step t, i.e., Y t = wj,k, if in step t,
request j was served using option k. Instead of the usual St

i , we
now define St

i (r) =
Pt

u=tr+1X
u
i , which is the sum of Xu

i ’s till
t for u’s belonging to stage r alone, i.e., u ∈ (tr, tr+1]. Similarly,
V t(r) =

Pt
u=tr+1 Y

u. Let wmax = maxj,k wj,k.
The potential function for constraint i in step twhen t ∈ (tr, tr+1]
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is defined by

φt
i = ηc(r)(1 + ǫc(r))

St
i(r)

γci

„

1 +
ǫc(r)

γm

«tr+1−t

,

ηc(r) = (1 + ǫc(r))
−(1+ǫc(r)) tr

γm ,

ǫc(r) =

r

4γm ln((n+ 1)/δ)

tr
.

Similarly, the potential function for objective at step t is,

φt
obj = ηobj(r)(1− ǫo(r))

V t(r)
wmax

„

1−
ǫo(r)Z(r)

wmaxm

«tr+1−t

,

ηobj(r) = (1− ǫo(r))
−(1−ǫo(r))

trZ(r)
mwmax .

ǫo(r) =

s

2wmaxm ln((n+ 1)/δ)

trZ(r)
.

Note that apart from constants, the only difference between ǫo(r)
and ǫc(r) is that instead of γ, ǫo(r) has wmax/Z(r). The value
Z(r), as we define below, gets progressively updated, but within
a single stage r remains the same. After stage r, the algorithm
computes the optimal objective value er to the following instance
Ir: the instance Ir has the tr requests of stage-r, and the capacity
of resource i is trci(1+ǫc(r))

m
, i.e., the capacity of resources are

scaled down according to the number of requests, but has a slight
extra allowance by a factor of (1 + ǫc(r)). It uses er to compute
the value Z(r+1) to be used in the potential function for objective
in stage r + 1.

LEMMA 14. With probability at least 1− δ(2 + 1
αr

)− 4 ǫc(r)
αr

,

trW
∗(1− ǫc(r))

m
≤ er ≤

trW
∗(1− ǫc(r))(1 + αr)

m
.

We prove Lemma 14 in the full version of the paper.
Using these er’s, we define our Z(r + 1) as follows:

Z(r + 1) =
mer

tr(1− ǫc(r))(1 + αr)
.

Using the bounds on er in Lemma 14, we note thatZ(r+1) ≤W ∗

and that Z(r + 1) ≥ W∗

1+αr
. Thus with probability at least

1−

l−1
X

r=0

»

δ(2 +
1

αr
) + 4

ǫc(r)

αr

–

,

Z(r) satisfies these bounds for all r. Given the bounds on Z(r),
we use Lemma 12 to see that with a probability at least (1− δ), the
objective value achieved in stage r is at least trZ(r)

m
(1−ǫo(r)), and

the amount of resource i consumed in stage r is at most trci

m
(1 +

ǫc(r)). Hence, these bounds are true for all r with probability at
least 1− log(1/ǫ)δ, since the total number of stages l = log(1/ǫ).

The total failure probability is the sum of the failure probability
during estimation of Z(r) through er, given by

l−1
X

r=0

»

δ(2 +
1

αr
) + 4

ǫc(r)

αr

–

and the failure probability of our algorithm in all stages together

given by log(1/ǫ)δ. Thus, the total failure probability is given by

TFP =

l−1
X

r=0

»

δ(2 +
1

αr
) + 4

ǫc(r)

αr

–

+ log(1/ǫ)δ

= 3 log(1/ǫ)δ +

l−1
X

r=0

»

δ

αr
+ 4

ǫc(r)

αr

–

With a probability of 1− TFP , the algorithm obtains an objec-
tive value of at least

l−1
X

r=0

trW
∗

m

„

1− ǫo(r)

1 + αr

«

,

and for each i, the amount of resource i consumed is at most

l−1
X

r=0

trci
m

(1 + ǫc(r)).

On setting γ = O
“

ǫ2/(log(1/ǫ)2

log(n)+log(1/ǫ)+log(1/δ′)

”

, for some positive

constant δ′ < 1, and setting αr = log(1/ǫ)ǫc(r)
δ′

and δ = δ′ǫ, the
above equations can be simplified to yield the following lemma.

LEMMA 15. With probability higher than (1−8δ′), the value of

the objective function achieved at the completion of the algorithm

is at least W ∗(1 − O(ǫ/δ′)) and no resource is consumed more

than its capacity.

For a fixed constant δ′, we have γ = O
“

ǫ2/(log(1/ǫ)2

log(n)+log(1/ǫ)

”

. Thus

Lemma 15 proves that, our algorithm achieves a competitive ratio
of (1−O(ǫ)) and hence proves Theorem 2.

6. ADWORDS IN I.I.D SETTING
In this section, we give a simple proof of Theorem 5: greedy al-

gorithm achieves a competitive ratio of (1 − 1/e) in the adwords
problem, where the impressions come from an adversarial stochas-
tic input model. As before, we illustrate our proofs for the i.i.d
model with unknown distribution below. We now briefly describe
the adwords setting.

Setting.
There are a total of n advertisers, and queries arrive online, from

some pool of queries. Let the (unknown) number of queries that
arrive be m. The queries that appear each day are drawn i.i.d
from some unknown distribution. Advertiser i bids an amount bij
on query j. Advertiser i has a budget Bi denoting the maximum
amount of money that can be spent on a given day. The bid amounts
bij are revealed online as the queries arrive. The objective is to
maximize the sum of the bid amounts successfully allocated, sub-
ject to budget constraints. Whenever a query j arrives, with a bid
amount bij > remaining budget of i, we are still allowed to allot
that query to advertiser i, but we only earn a revenue of the remain-
ing budget of i, and not the total value bij .

Goel and Mehta [GM08] prove that the greedy algorithm gives a
(1− 1/e) approximation to the adwords problem when the queries
arrive in a random permutation or in i.i.d, but under an assumption
which almost gets down to bids being much smaller than budgets.
We give a much simpler proof for a (1 − 1/e) approximation by
greedy algorithm for the i.i.d unknown distributions case, and our
proof works irrespective of the the relation between the size of the
bids and the budgets involved.

Let pj be the probability of query j appearing in any given im-
pression. Let yj = mpj . Let xij denote the offline fractional
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optimal solution for the distribution instance. Let wi(t) denote the
amount of money spent by advertiser i at time step t, i.e., for the
t-th query in the greedy algorithm. Let fi(0) =

P

j bijxijyj . Let

fi(t) = fi(0) −
Pt

r=1 wi(r). Let f(t) =
Pn

i=1 fi(t). Note that
fi(0) is the amount spent by i in the offline fractional optimal so-
lution to the distribution instance.

Consider the greedy algorithm which allocates the query j arriv-
ing at time t to the advertiser who has the maximum effective bid
for that query, i.e., argmax

i
min{bij , Bi−

Pt−1
r=1 wi(r)}. We prove

that this algorithm obtains a revenue of (1 − 1/e)
P

i,j bijxijyj

and thus gives the desired 1 − 1/e competitive ratio against the
fractional optimal solution to the distribution instance. The proof
is similar to the proof we presented in Lemma 8 for the resource
allocation problem. Consider a hypothetical algorithm that allo-
cates queries to advertisers according to the xij’s. We prove that
this hypothetical algorithm obtains an expected revenue of (1 −
1/e)

P

i,j bijxijyj , and argue that the greedy algorithm only per-

forms better. Let wh
i (t) and fh

i (t) denote the quantities analogous
to wi(t) and fi(t) for the hypothetical algorithm, with the initial
value fh

i (0) = fi(0) =
P

j bijxijyj . Let fh(t) =
Pn

i=1 f
h
i (t).

LEMMA 16. The hypothetical algorithm satisfies the following:

E[fh(t)|fh(t− 1)] ≤ fh(t− 1)(1− 1/m)

LEMMA 17. E[GREEDY] ≥ (1− 1/e)
P

i,j bijxijyj

We prove Lemma 16 and 17 in the full version of the paper.
Lemma 17 proves Theorem 5.

7. APPLICATIONS
We now list the problems that are special cases of the resource

allocation framework and have been previously considered. See the
full version of the paper for more special cases.

7.1 Adwords Problem
While in Section 2.2.1 we noted that we could get a 1 − 1/e

approximation to the adwords problem with unbounded γ, we note

here that γ is small, i.e. maxi,j
bij

Bi
≤ ǫ2/ log(1/ǫ)2

log(n)+log(1/ǫ)
, we get a

1−O(ǫ) approximation to the maximum profit through the resource
allocation framework.

7.2 Network Routing and Load Balancing
Consider a graph (either undirected or directed) with edge capac-

ities. Requests arrive online; a request j consists of a source-sink
pair, (sj , tj) and a bandwidth ρj . In order to satisfy a request, a
capacity of ρj must be allocated to it on every edge along some
path from sj to tj in the graph. In the congestion minimization ver-
sion, all requests must be satisfied, and the objective is to minimize
the maximum (over all edges) congestion, which is the ratio of the
allocated bandwidth to the capacity of the edge. In the through-

put maximization version, the objective is to maximize the number
of satisfied requests while not allocating more bandwidth than the
available capacity for each edge. (Different requests could have
different values on them, and one could also consider maximizing
the total value of the satisfied requests.) Both the congestion min-
imization version and the throughput maximization version can be
solved through our algorithm 1 for resource allocation framework.
Kamath, Palmon and Plotkin [KPP96] considered a variant of this
problem with the requests arriving according to a stationary Pois-
son process, and show a competitive ratio that is very similar to
ours.

7.3 Combinatorial Auctions
Suppose we have n items for sale, with ci copies of item i. Bid-

ders arrive online, and bidder j has a utility function Uj : 2[n] →
R. If we posted prices pi for each item i, then bidder j buys a bun-
dle S that maximizes Uj(S) −

P

i∈S pi. We assume that bidders
can compute such a bundle. The goal is to maximize social welfare,
the total utility of all the bidders, subject to the supply constraint
that there are only ci copies of item i. Firstly, incentive constraints
aside, this problem can be written as an LP in the resource allo-
cation framework. The items are the resources and agents arriving
online are the requests. All the different subsets of items form the
set of options. The utility Uj(S) represents the profit wj,S of serv-
ing agent j through option S, i.e. subset S. If an item i ∈ S,
then ai,j,S = 1 for all j and zero otherwise. Incentive constraints
aside, our algorithm for resource allocation at step t, will choose
the option k (or equivalently the bundle S) as specified in point 4
of algorithm 1, i.e., minimize the potential function. That can be
equivalently written as,

arg max
k

8

>

>

>

>

>
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>

>

>

>

>

:

ǫo/wmax
“

1− ǫoZ(r)
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”φt−1
obj wj,k

−
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1 + ǫc

γm

”

X

i

φt−1
i

a(i, j, k)

ci
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=

>

>
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>

;

Now, maximizing the above expression is the same as picking the
k to maximize wj,k −

P

i pia(i, j, k), where

pi =

ǫc/γ
“

1+
ǫc

γm

”

ǫo/wmax
“

1−
ǫoZ(r)
wmaxm

”φt−1
obj

·
φt−1

i

ci
.

Thus, if we post these prices pi on items, agents will do exactly
what the algorithm would have done otherwise. Suppose that the
bidders are i.i.d samples from some distribution (or they arrive as in
the adversarial stochastic input model). Here γ = 1/mini{ci} and
we can use Theorem 2 to get an incentive compatible posted price
auction5 with a competitive ratio of 1−O(ǫ) whenever mini{ci} ≥
log(n)+log(1/ǫ)

ǫ2/ log(1/ǫ)2
. Further if an analog of Theorem 2 also holds in the

random permutation model then we get a similar result for combi-
natorial auctions in the offline case: we simply consider the bidders
one by one in a random order.

7.4 Selective Call-out
Chakraborty et. al. [CEDG+11] formulated the following prob-

lem that arises in the design of an ad-exchange. An exchange gets
ad-requests online; each ad-request may have multiple slots with
different qualities. Whenever the exchange gets an ad-request, it
calls out to a subset of ad-networks for a bid. Given the bids it then
allocates the slots to the highest bidders. The ad-networks have
constraints on how frequently they want to be called out. In addi-
tion, the following assumptions are made: the ad-requests are i.i.d
samples from an unknown distribution, and for every ad-network
its values for all ad-requests of a certain type are i.i.d from a dis-
tribution that is known to the exchange. They consider various ob-
jective functions, such as social welfare, revenue of a particular
auction, GSP with reserve, and so on. They state their results in
the PAC model, where they use an initial sample of impressions to
train their algorithm. They give a bound on the number of samples
needed in order to get a 1 − 1/e − ǫ competitive algorithm. We
5Here we assume that each agent reveals his true utility function
after he makes his purchase. This information is necessary to com-
pute the prices to be charged for future agents.
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can use our algorithms (with an approximate relaxation, Theorem
4) to improve their results in the following two ways. Either we are
given the target objective value, in which case we achieve the same
competitive ratio in the online setting without the need for an initial
sample. If we are not given the target objective value then we need
an initial sample to estimate that value. The number of samples we
need is less than what is required by [CEDG+11] by a factor of n.
Further, our algorithm would also work in the adversarial stochastic
input model.

8. CONCLUSION AND FUTURE WORK
Our work raises the following open questions.

• As mentioned in the introduction, we can show that our al-
gorithm works in the i.i.d model, so the natural question is if
our algorithm works for the random permutation model.

• Currently in our algorithm for the online case, we need to
estimate the optimum objective function value periodically.
For this we need to solve (at least approximately) an offline
instance of the problem repeatedly. Is there an algorithm that
avoids this?

• Perhaps the holy grail for an online algorithm for say, Ad-
words, is to get a guarantee of the following form: if the
input is i.i.d from some given distribution then get a compet-
itive ratio that is close to 1, while simultaneously getting a
competitive ratio of 1−1/e if the input is adversarial. Our al-
gorithm for Adwords (or some simple variant) could actually
achieves this. At the very least, can we get such a guarantee
for online b-matching with different budgets? Note that when
all the budgets are the same then our algorithm for the min-
max version is equivalent to a simple algorithm called BAL-
ANCE that achieves this. (This observation follows from the
results in Kalyanasundaram and Pruhs [KP00] and Motwani,
Panigrahy and Xu [MP06].)

• A high level goal is to come up with other reasonable defi-
nitions that go beyond worst case. The motivation for this is
to bridge the gap between the theory and practice of online
algorithms.
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